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Uses and Abuses of the Langevin Equation for 
Chemical Reactions in Condensed Phases 

Irwin Oppenheim I and Alex Orsky 1 

The Langevin and Fokker-Planck equations are useful in the description of 
many classical and quantum mechanical systems. However, these equations are 
justifiable from molecular considerations under very restricted conditions. These 
conditions include weak coupling, Brownian motion, and systems with special 
Hamiltonians. The application of these equations to chemical reactions in con- 
densed phases is fraught with peril, particularly for fluid systems. We examine 
the molecular derivations of these equations and describe the conditions under 
which they are justifiable. It is, of course, possible that the equations are useful 
under other conditions. 

KEY WORDS:  Langevin equation; Fokker-Planck equation; chemical 
reactions; weak coupling; Brownian motion. 

1. I N T R O D U C T I O N  

There have been many attempts to derive the Langevin and Fokker-  
Planck equations from molecular considerations (1 3) since they were intro- 
duced in a heuristic fashion by the original investigators. There have also 
been many caveats raised for the application of these equations and it has 
been demonstrated that careless use of these equations leads to incorrect 
results. (4,s) In this paper, we shall restrict our attention to classical systems, 
although the extensions to quantum systems is straightforward in many 
cases.  

The overall systems that we consider have the following properties in 
common. They consist of a system of a few degrees of freedom described by 
a Hamiltonian Hs. The isolated system does not relax to equilibrium and 
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it is assumed that the dynamical equations of the system can be solved. The 
motion of the isolated system is characterized by a time scale Zs. The 
system is embedded in a bath of many degrees of freedom with 
Hamiltonian Hb. The isolated bath will decay to equilibrium on a short 
time scale % in the sense that its macroscopic properties can be obtained 
by using an equilibrium distribution function. Finally, the interaction 
between the system and the bath is described by a potential ~b. This interac- 
tion stimulates the decay of the system to equilibrium on a time scale *R. 

The coordinates and momenta of the system will be denoted by R and 
P and those of the bath by r and p. Thus, H s = H~(R, P), H b = Hb(r, p), 
and ~b=~b(r,R). We note that other variables, e.g., action-angle 
variables, (6) may be useful in the description of some applications. 

The interaction terms in the dynamical equations for the time 
dependence of a dynamical variable of the system G(R, P) and for the 
reduced distribution function for the system W(R, P, t) involve time 
integrals over a time-dependent correlation function of fluctuating forces K, 
where the average in the correlation function is over the bath degrees of 
freedom. Our criteria for the utility of the Langevin or Fokker-Planck 
approach is that this correlation function is either independent of the 
system variables or at most depends on the time evolution of these 
variables under the Hamiltonian Hr. If this is not true, little has been 
accomplished by forcing the equations into a Langevin or Fokker-Planck 
form. 

In Section 2, we present exact equations of motion for an arbitrary 
dynamical variable G(R, P) and for the reduced distribution function 
W(R, P, t). These equations are obtained using projection operator tech- 
niques and are rewritings of the usual equations in suggestive forms. In 
Section 3, we describe the conditions under which our criteria of validity 
are met. In Section 4, we investigate the conditions under which these 
simplified equations are valid for chemical reactions in condensed phases. 
Finally, in Section 5 we present a summary and conclusions. 

2. D E R I V A T I O N  OF EXACT D Y N A M I C A L  E Q U A T I O N S  

The exact dynamical equations for G(R, P) and W(R, P, t) can be 
rewritten in suggestive forms using projection operator techniques. 

We consider a classical overall system consisting of a system with n 
degrees of freedom and a bath of N degrees of freedom with n ,~ N. The 
Hamiltonian for the overall system is 

H = H s ( R  , P ) +  Hb(r , p ) +  ~(r, R) (2.1) 
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and the corresponding Liouville operator is 

where 

L = L,(R, P) + Lb(r , p) + L,(R, P, r, p) (2.2) 

8H~ 8 8 H  s 8 (2.3a) 
L s =  8 P ' S R  8 R  8P  

8H___2" 8 8H b 8 (2.3b) 
Lb= 8p 8r--  a---~-'3-p 

and 
aO a aO a 

L 1 - (2.3c) 
8R 8P 8r 8p 

The projection operator that we use to obtain the dynamical equation 
for G is (z) 

PB = f fiB dXb = ( B )  (2,4) 

where B is an arbitrary dynamical variable, Xb is the phase point of the 
bath, and ~ is the equilibrium conditional distribution function for the bath 
in the presence of a fixed system, i.e., 

f = - p S W e = p b e  ~ e  ~w (2.5) 

where Pe is the equilibrium distribution function for the overall system, W e 
is the reduced equilibrium distribution function for the system, Pb is the 
equilibrium distribution function for the isolated bath, and w(R) is the 
potential of mean force, which is given by 

e ~W-<e-B~>o-fp~e ~*dXb (2.6) 

Thus, f is a function of r, p, and R and is normalized by 

f f dXb = 1 (2.7) 

We define the fluctuating force KG(t ) by 

Ka( t  ) = e (1 - P) Lt( l --  P) LG 

= e  (l P ) L t ( ] - P ) P . V p G = - e  (1 P) L t ( v R ( ~ - - w ) ' V p G  ) (2.8) 
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and use standard procedures to obtain (7) 

G(t) = [(VpH s ' V R - V R H , ' V P - V R w ' V P )  G](t) 

+ e I4~ ~  d a + K c ( t )  (2.9) 

Equation (2.9) is an exact equation for G(t). It has a form suggestive of the 
Langevin equation, since K c ( t  ) is a fluctuating force with properties 

<KG(t ) B(R, P)> = <KG(t) > B(R, P ) = 0  (2.10) 

where B is an arbitrary dynamical variable of the system. Note that if G is 
a nonlinear function of P, K c ( t  ) involves system variables and is, at best, 
multiplicative. The notation I-]( t)  denotes the value of the quantities in 
the bracket at time t evolving under the full Liouville operator and 

K ( t ) = - e ( 1 - P ) c ' ( 1 - P ) L P = - e  (1 P) L' gr(~b-  w) (2.11) 

is the fluctuating force conjugate to the momentum. The correlation 
function in Eq. (2.9) is, in general, a complicated function of R, P, and a. 

The projection operator that is used to obtain an equation for 
W(R, P, t) is /~,(1) where 

f iB = ~ f d X  b B (2.12) 

which corresponds to P, but acts in the dual space. We use the Liouville 
equation for the time-dependent distribution function of the overall system 
p(t), 

15(t) = - L p ( t )  (2.13) 

and introduce the quantities 

y( t )  - :Pp(t) = ~ W(t )  (2.14a) 

z( t)  = (1 - /3)  p(t)  = Q.p(t) (2.14b) 

with properties 

y( t )  d X  b = W(t )  

z(t)  dXb = 0 

(2.15) 
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to obtain an exact equation for I/V(t) in the form ") 

f f ( R , P , t ) = (  8H~ 8 8H, 8 Ow 08 ) - o-P+-g-i" w ( a ,  P, t) 

+Vp'o l  dXb VRCe O-COtz(O) 

+ Vp" Jo da f dXb {V/'~R ~ exp[--  QLQa] ~ Ver 

�9 (Vp + fl VpH~) W(R, P, t - (7) 

Here, 

(2.16) 

A 
VRr162 (VRr  =VR(r W) (2.17) 

Equation (2.16) contains a streaming term, an initial value term involving 
z(0), and a term involving a time integral. It has a form suggestive of the 
Fokker-Planck equation. Since Eqs. (2.9) and (2.16) are exact, they are 
equivalent in the sense that total averages of G(t) obtained from these 
equations are identical. 

3. S I M P L I F I C A T I O N  OF THE EXACT 
E Q U A T I O N S  OF M O T I O N  

In this section we study the conditions under which Eq. (2.9) becomes 
a generalized Langevin equation and Eq. (2.16) becomes a generalized 
Fokker-Planck equation. In general the three time scales rs, %, and ~R are 
arbitrary and we cannot expect simplifications of these equations, except in 
special cases, unless re ~> %. 

3.1. W e a k  Coupl ing  (3) 

In an overall system in which the system is weakly coupled to the 
bath, we can introduce a smallness parameter 2 to rewrite Eqs. (2.1) and 
(2.2) as 

H= Hs + Hb + 2 r and L= Ls + Lb + 2L I (3.1) 

In addition, w is proportional to 2, as are K and K a. In Eq. (2.9), there is 
a factor of 2 in front of the VRw-V e term and the Ka(t) term and a factor 
of 2 2 in front of the time integral. If the correlation function in Eq. (2.9) 
decays on a 2~  1 time scale, it becomes to order 2 2 

22<KK~(a)> = f f < [ ( 1 - P o ) V R r  eL~ (3.2) 



864 

where L o - L b  + L~, the average is over ph, 

Po B= ( B ) o  

and 
PoLo(1 - Po)B = 0 

Equation (3.2) can be rewritten 

22 (KKG(o -) ) = 22( [(1 - Po) VR~b(r, R)](1 -- Po) 

• VRo(~)~b(ro(a), Ro(a)) )o eLs~ VpG 

where 

Oppenheim and Orsky 

(3.3) 

(3.4) 

(3.5) 

The last term in Eq. (3.7) involves VpH s, which can be written 

Vegs=Vegs(a)=VeRo(a) .Vao(, , )Hs(a)+VpPo(a) 'Veo( ,~)gs(a)  (3.8) 

Finally, the term e L(' o) can be approximated by 

eL( t -~)=eLte  LCr~eLl e LO~ (3.9) 

When this operates on (3.7) we obtain 

eLt[(e -r 'a  VpRo(ff)):  (VRC) �9 J(R, P) 

+ C*: ([e-L '~ VRJ(R, P ) +  [e-L~~ P)) 

- f i ( [ e  L'" VpRo(o')] "VRHs+ [e-Ls~ .VpH, ) .  C .J(R,  P)]  

(3.10) 

Here, C = C(R0( -a ) ,  R, a) and VRC acts on R only. This is a complicated 
expression, but it satisfies the criterion that the integral over a involves the 

(3.7) 

r o ( a )  -= eL~ = eL~r, Ro(a ) _= eC~ = eL'~R (3.6) 

The correlation function is still a function of R and Ro(a), and e L'~ VpG is 
a function of Ro(a) and Po(cr). We denote the correlation function by 
C(R, Ro(a ), a) and e Ls~ VeG by J(Ro(a), Po(a)). We must still operate on 
Eq. (3.5) by Vp- f lVpH~.  The result is 

(Ve - f lVpH~) �9 C(R, Ro(a), a)" J(Ro(o'), Po(a)) 

= [VpRo(a)" VRo(~)" C]"  J 

+ C*: (VpRo(a) "Vno(.~) + VePo(a) "Vpo(,,))J - flVeH~" C" J 
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o dependence of r0(a ) and expressions like [e c,~ VeRo(a)] ' which involve 
t]he dynamics of the isolated system. 

Equation (3.10) simplifies under some additional conditions. If 
G(R, P ) =  P, 3 = I, and the terms involving derivatives of J disappear. If 
the interaction between the system and the bath is linear in the system 
coordinate, VR~b is independent of R and the derivative of C disappears. If 
t]he interaction between the system and the bath depends on r - R ,  C 
depends on R - R o ( - a  ) and a. Finally, if the system Hamiltonian is that 
of a harmonic oscillator, then, e.g., 

e Cso VePo(~r) = I cos s (3.11) 

Note that even in the simplified form we need to know C(a) as a 
flmction of a rather than its time integral. 

In the weak coupling limit the equation for I)/(R, P, t), Eq. (2.16), also 
simplifies. There is a 2 in front of the Ow/8 R term and in front of the initial 
value term. A factor of )2 appears in front of the term involving a time 
integral. Again, the integral can be computed to order 2 0 . It becomes 

Vp f dXb ([(1 - Po) VR~b] e-L~ ~ P 0 ~  V ~  O 

�9 (Vp + flVpH~) e+Ls~W(R, P, t)) 

= Ve" C(R, R o ( - a ) ,  - a ) ' e  c~~ e + flVeH~)eL'~W(R, P, t) 
(3.12) 

Using the same considerations as above in the simplification of the 
Langevin equation, we can obtain 

Ve" C(R, R o ( - a  ), - a ) "  e L'~ + flVpHs) eL'~W(R, P, t) 

=VpRo(-~): VRo(_~>C(R, Ro(-O-), - a )  

" { [e -L,~ VeRo(a)] �9 (VR + flVRH,) 

+ [e-L'~' VePo(a)] �9 (Vp+flvpn,)} W(R, P, t) 

+ C*(R, R o ( - a ) ,  --a): Ve{. } W(R, P, t) (3.13) 

where the expression in {. } in the last term in Eq. (3.13) is identical to the 
expression in {. } in the first term on the rhs. Further simplifications occur 
under the conditions described above for the Langevin equation. Even in 
the simplest form, we must know C as a function of a. 

822/65/5-6-3 
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3.2. B r o w n i a n  M o t i o n  ~1'2'7~ 

If all the changes in the motion of the system are slow because, e.g., 
its mass M is large compared to the mass of a bath particle m and its 
momentum is large compared to the momentum of a bath particle, i.e., 

IPI = Ip l  -~ /; 1 [p [  ( 3 . 1 4 )  

where e is defined by Eq. (3.14), it is useful to introduce the momentum 

P * = e P  

which is of order eo. Equation (2.9) becomes 

(~(R(t),  P * ( t ) )  -- e [ (Vp .  H~" VR -- VR Hs" Vp. - VR w" Vp. )  G ] ( t )  

where 

+~2 e L ~ t - ~  H~)" (KKc(o ' ) )  dot+eKe(t)  

(3.15) 

KG(t ) = _e(l  - p) L, VR(r -- W)" Vp. G (3.16) 

Equation (2.2) becomes 

L = e L s ( R , P * ) + L b ( r , p ) - e v R o ' v p . - V r O ' V  p (3.17) 

and 

Ls(R, P * ) = V p . H s . V R - V R H s . V p .  (3.18) 

Since there is a factor of e 2 in front of the time integral in Eq. (3.15), the 
kernel can be simplified to 

( K K G ( a ) ) =  [VR(~b-w)] eLb~[VR(~b-w)] ) 'Vp.G=-C(R,  a ) ' V p . G  

(3.19) 
where 

/~b = Lb - V,~b" Vp (3.20) 

and the average in Eq. (3.19) is taken over fi, Eq. (2.5). This average is in 
general a function of R. This simplification occurs if C decays to 0 on a 
molecular time scale. The time integral in Eq. (3.15) becomes 

f~da a): E(Vp. - / 3Ve .  Hs) Vp. G] (t) (3.21) C*(R(t), 



Uses and Abuses of the Langevin Equation 867 

The kernel becomes independent of R if the interaction potential is a 
function of r - R. 

For times t >  %, the time integral in (3.21) can be extended to infinity 
and we do not need to know the a dependence of C. 

Equation (2.16) also simplifies under these conditions for the reduced 
system distribution function W(R, P*, t). In this equation, P is replaced by 
P* and there is a factor of e in front of the streaming and initial value 
terms and a factor of e 2 in front of the time integral. The kernel in 
Eq. (2.16) becomes 

/ ' - - .  

(Ve~be -L,,o VR~b ) = C(R, rr) (3.22) 

and the last term in Eq. (2.16) becomes 

e2 f~ da C*(R, a): Ve.(Vp. + fiVe.H,.) W(R, P*, t) (3.23) 

For time scales of interest for the Brownian system, the integral in 
Eq. (3.23) can be extended to infinity and all we need to know is 

Finally, the initial value term in Eq. (2.16) decays to zero for times 
greater than rb and we obtain the usual Fokker-Planck equation. Under 
these circumstances, averages of the Langevin equation can be taken over 
the distribution function 15 and the average fluctuating force is zero. 

3.3. Harmonic  Osci l lator Systems (8) 

We have already seen that terms of the form e-L'~ simplify 
dramatically when the system Hamiltonian is that for a harmonic 
oscillator; see Eq. (3.11). Indeed, the generalized Langevin and Fokker-  
Planck equations simplify dramatically when the system and bath are both 
harmonic and the coupling between them is bilinear. We note that if the 
interaction is not of this form, serious difficulties can occur. 

The Hamiltonian for this overall system is given by Eq. (2.1) with 

H s = P2/ZM + 1/2Mf22R 2 (3.24a) 

N 

Hb = Z (P2/2m + 1/2m~ r2) (3.24b) 
j = l  

and 

HI = - Y ,  2jrjR (3.24c) 
) 



868 Oppenheim and Orsky 

For proper behavior of this interaction, the coupling constant 2j must be 
of order N -  t/2. 

It is convenient to introduce the variable &, where 

yi=-rj moo2 (3.25) 

and to rewrite the Hamiltonian for the overall system as 

N 

H = p2 /2M+ 1/2MO2R 2 + 2 (P2/2m + 1/2mc~ 2) (3.26) 
j - - 1  

where 

02 = ~ 2 -  ~ ~s2o~ 2 (3.27) 

The subtractive term in Eq. (3.27) can be eliminated by adding a term 
Zj(22/2m~o 2) R 2 to the total Hamiltonian. 

The distribution function fi for this case is given by 

iv exp[ - fl(p2/2m + 1/2mco~y~)] VI (3.28) 
=jl t S dyj dpj exp[ - fl(pZ /2m + 1/2mcoZy2) ] 

and the equations of motion are 

9j = p j m  - (2jmMco 2) P, 

k = P/M, 

Equation (2.9) becomes 

I ) j  ~ --mcoZ yj 

[~ = - M O Z R  + ~ "~jYj 
! 

(3.29) 

KG(t) = e (~ - e) et ~ 2j y jV e G (3.31 ) 
J 

Note that the fluctuating force Kc(t) is at least multiplicative unless G = P. 

a ( t )  = KG(t )  + [ ( P / M V R  -- MO2RV,,) a](t) 

+ fo 'd~reL(t -~ ~ 2j ) , j , (y;e( ' -P)L~ VeG (3.30) 
j , j '  

where the average is over/3 and the operator e 11 e)tt  acts on yj and VeG. 
Here 



Uses and Abuses of the Langevin Equation 869 

For G = P, the kernel in Eq. (3.30) is simple to evaluate and we obtain 

e)L,y ) _ V  ~ 2 )~j2j,(yj,e I'- j - ~  2j(y i )cosoo. j t=I( t  ) (3.32) 
LJ' J 

The integral in Eq. (3.30) then becomes 

foda - ~ P ( t -  o) I(a) (3.33) 
M 

T]he simplification in Eq. (3.32) does not occur unless G =  P. For  other 
functions we do not obtain a generalized Langevin equation. Furthermore, 
we do not obtain a generalized Fokker-Planck equation unless the inter- 
ac, tion is weak. 

The harmonic oscillator system is special in a variety of ways. The 
isolated bath has no mechanism for equilibration and this can cause serious 
difficulties if the interaction term is nonlinear in bath coordinates. ~9~ 

4. A P P L I C A T I O N S  TO C H E M I C A L  R E A C T I O N S  
IN C O N D E N S E D  P H A S E S  

In Section 3, we have shown that the exact equations for the time 
dependence of G(t), Eq. (2.9), and for W(t), Eq. (2.16), reduce to 
generalized Langevin and Fokker Planck equations under restrictive 
conditions which involve weak coupling, Brownian motion, or special 
Hamiltonians (e.g., harmonic oscillator systems). Even under these restric- 
tions, simple results are obtained only when the interaction potential is of 
a special form. These special forms include potentials which are linear in 
the system coordinate or in which the interaction potential depends on the 
relative distance, I r - R ] .  Even more restrictive conditions apply to the 
interaction potential for harmonic systems. If the interaction term for these 
systems is quadratic in the bath coordinate, serious difficulties arise because 
r 2 has a projection onto the constants of the motion of the bath. 

The application of the results of Section 3 to chemical reactions in 
condensed phases severely restricts the types of reactions that can be 
treated. We consider the simplest type of reaction in which there is one 
reaction coordinate for which the potential is of standard form, i.e., a well 
with an infinite wall on one side and a finite wall on the other. Reaction 
occurs when the system goes over the top of the finite barrier. (1~ 

The overall system consists of one solute molecule which can react and 
N solvent molecules which mediate the reaction. In this case the bath 
degrees of freedom include the positions and momenta of the solvent 
molecules, the center-of-mass position and momentum of the solute 
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molecule, and the rotational motion of the solute molecule. The system 
degrees of freedom consist of the reaction coordinate and its conjugate 
momentum. Thus, the bath has 6 N +  12 degrees of freedom for spherical 
solvent molecules and a nonlinear solute molecule and the system has two 
degrees of freedom, R and P. The motion of the system degrees of freedom 
takes place in the potential of the isolated solute molecule as modified by 
the potential of mean force, w(R), due to interaction with the bath degrees 
of freedom. In the following, we shall discuss the applicability of the 
various regimes delineated in Section 3 to chemical reactions in condensed 
phases. 

4.1. Weak  Coupl ing 

In the weak coupling regime discussed in Section 3, we have assumed 
that the potential of interaction between the bath and the system r and its 
spatial derivative VRr are small. Similar results can be obtained for 
arbitrary r but small VRr and VRw. We can then apply the results of 
Section 3.1 to the situation in which there is an R-independent change 
in the potential of the isolated solute molecule. Unfortunately, in many 
reactions in solution, the potential of mean force is strongly R dependent 
and the change in the reaction coordinate potential is strongly R dependent. 
Under these conditions weak coupling cannot be applied and the exact 
equations do not reduce to a useful form. 

4.2. B r o w n i a n  M o t i o n  

If the internal motions of the solute molecule are slow and its momen- 
tum is large, we can apply the considerations of Section 3.2 to reactions in 
solution. This will apply if the well is broad and the classical Kramers 
treatment will apply/11) Note that the friction coefficient for this case is 
small since it contains a factor of m/M. In many cases, if the internal 
motions are slow, e.g., for the I2 molecule, the translational and rotational 
motions of the molecule will also be slow and we will obtain a Fokker 
Planck equation for the reduced distribution function of all of the degrees 
of freedom of the solute molecule. 

4.3. Harmonic  Oscil lator Systems 

Many investigators have studied harmonic oscillator systems (12~ with 
bilinear interaction potentials as prototypes for discussing chemical 
reactions in condensed phases. These studies have utilized the Langevin 
equation for the momentum or the normal mode properties of the overall 
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system or both. In these studies the bottom of the well is modeled by a 
harmonic oscillator and the barrier by an inverted harmonic oscillator. It 
is sometimes useful (6) to use action-angle variables to describe the system, 
although there are difficulties with this .approach near the top of the 
barrier. 

The use of harmonic oscillator systems for the description of chemical 
reactions in solids is well-founded. However, the application of these ideas 
to chemical reactions in liquids must be investigated carefully. If the bath 
is modeled by a collection of noninteracting harmonic oscillators with a 
dense frequency spectrum from zero to some cutoff frequency, all of the 
diffusional motions of the bath are suppressed. The diffusion constant for 
the bath is zero and its thermal conductivity is infinite. 

Several investigators have studied the normal mode frequency dis- 
tribution of a liquid and have found both stable and unstable modes. (13) 
The unstable modes have imaginary frequencies similar to those found for 
the inverted harmonic oscillator which has been used to model the shape 
of the barrier for the reacting system. The nonzero diffusion constant for 
the bath is due to the finite lifetime of the stable mode oscillations. The 
unstable mode oscillations have even a shorter lifetime. In the simplest 
case, then, the sum over frequencies in Eq. (3.32) must include both stable 
and unstable modes both with finite lifetimes. The study of these effects on 
chemical reactions in liquids is underway. 

5. C O N C L U S I O N S  

We have studied the conditions under which the exact equations for 
the time dependence of a dynamical variable, Eq. (2.9), and for the time 
dependence of a reduced distribution function, Eq. (2.16), reduce to 
generalized Langevin or Fokker-Planck equations. This reduction is 
justifiable from molecular considerations under the restricted conditions of 
weak coupling, Brownian motion, or harmonic systems with special types 
of interaction potentials. 

The range of chemical reactions in condensed phase which can be 
described using these reduced equations is severely limited. 

We end with a word of caution. It is frequently found that the useful 
range of approximations is considerably broader than their justifiable 
range. The crucial test is whether the results of the theory agree with 
experiment or computer simulations. The computer simulations must be 
performed using the exact dynamics and not some approximation to them. 
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A C K N O W L E D G M E N T  

I t  is a p l easu re  to t h a n k  G e o r g e  Weiss  for m a n y  e n j o y a b l e  c o l l a b o r a -  

t ions  wi th  h i m  and  for his c o n t r i b u t i o n s  to  science in general .  
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